Microphysiological system for heart tissue - going from 2D to 3D culture
نویسندگان
چکیده
منابع مشابه
3D-Culture System for Heart Regeneration and Cardiac Medicine
3D cultures have gained attention in the field of regenerative medicine for their usefulness as in vitro model of solid tissues. Bottom-up technology to generate artificial tissues or organs is prospective and an attractive approach that will expand as the field of regenerative medicine becomes more translational. We have characterized c-kit positive cardiac stem cells after long-term cultures ...
متن کاملInduced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System
Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...
متن کاملHydrodynamic 3D Culture for Bone Tissue Engineering
Bone tissue engineering provided a promising approach for treatment of large bone defects resulting from maladies such as birth defects, trauma, or tumor resection. In vitro culture of a porous scaffold seeded with osteoprogenitor cells may enhance its bone regeneration potential. In this chapter, we describe the design of a novel perfusion bioreactor system with oscillatory flow for cultivatin...
متن کاملPriority depth fusion for the 2D to 3D conversion system
For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods ...
متن کامل2D and 3D Self-Assembling Nanofiber Hydrogels for Cardiomyocyte Culture
Collagen is a widely used biomaterial in cardiac tissue engineering studies. However, as a natural material, it suffers from variability between batches that can complicate the standardization of culture conditions. In contrast, synthetic materials are modifiable, have well-defined structures and more homogeneous batches can be produced. In this study, several collagen-like synthetic self-assem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Directions in Biomedical Engineering
سال: 2019
ISSN: 2364-5504
DOI: 10.1515/cdbme-2019-0068